Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Neuroimage Rep ; 3(2): 100175, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357432

RESUMO

Background: Brain MRI in infants at ultra-high-field scanners might improve diagnostic quality, but safety should be evaluated first. In our previous study, we reported simulated specific absorption rates and acoustic noise data at 7 Tesla. Methods: In this study, we included twenty infants between term-equivalent age and three months of age. The infants were scanned on a 7 Tesla MRI directly after their clinically indicated 3 Tesla brain MRI scan. Vital parameters, temperature, and comfort were monitored throughout the process. Brain temperature was estimated during the MRI scans using proton MR spectroscopy. Results: We found no significant differences in vital parameters, temperature, and comfort during and after 7 Tesla MRI scans, compared to 3 Tesla MRI scans. Conclusions: These data confirm our hypothesis that scanning infants at 7 Tesla MRI appears to be safe and we identified no additional risks from scanning at 3 Tesla MRI.

2.
AJNR Am J Neuroradiol ; 41(8): 1532-1537, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732273

RESUMO

BACKGROUND AND PURPOSE: Cerebral MR imaging in infants is usually performed with a field strength of up to 3T. In adults, a growing number of studies have shown added diagnostic value of 7T MR imaging. 7T MR imaging might be of additional value in infants with unexplained seizures, for example. The aim of this study was to investigate the feasibility of 7T MR imaging in infants. We provide information about the safety preparations and show the first MR images of infants at 7T. MATERIALS AND METHODS: Specific absorption rate levels during 7T were simulated in Sim4life using infant and adult models. A newly developed acoustic hood was used to guarantee hearing protection. Acoustic noise damping of this hood was measured and compared with the 3T Nordell hood and no hood. In this prospective pilot study, clinically stable infants, between term-equivalent age and the corrected age of 3 months, underwent 7T MR imaging immediately after their standard 3T MR imaging. The 7T scan protocols were developed and optimized while scanning this cohort. RESULTS: Global and peak specific absorption rate levels in the infant model in the centered position and 50-mm feet direction did not exceed the levels in the adult model. Hearing protection was guaranteed with the new hood. Twelve infants were scanned. No MR imaging-related adverse events occurred. It was feasible to obtain good-quality imaging at 7T for MRA, MRV, SWI, single-shot T2WI, and MR spectroscopy. T1WI had lower quality at 7T. CONCLUSIONS: 7T MR imaging is feasible in infants, and good-quality scans could be obtained.


Assuntos
Recém-Nascido , Lactente , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
3.
NMR Biomed ; 32(12): e4178, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31608515

RESUMO

Phosphorus (31 P) MRSI provides opportunities to monitor potential biomarkers. However, current applications of 31 P MRS are generally restricted to relatively small volumes as small coils are used. Conventional surface coils require high energy adiabatic RF pulses to achieve flip angle homogeneity, leading to high specific absorption rates (SARs), and occupy space within the MRI bore. A birdcage coil behind the bore cover can potentially reduce the SAR constraints massively by use of conventional amplitude modulated pulses without sacrificing patient space. Here, we demonstrate that the integrated 31 P birdcage coil setup with a high power RF amplifier at 7 T allows for low flip angle excitations with short repetition time (TR ) for fast 3D chemical shift imaging (CSI) and 3D T1 -weighted CSI as well as high flip angle multi-refocusing pulses, enabling multi-echo CSI that can measure metabolite T2 , over a large field of view in the body. B1+ calibration showed a variation of only 30% in maximum B1 in four volunteers. High signal-to-noise ratio (SNR) MRSI was obtained in the gluteal muscle using two fast in vivo 3D spectroscopic imaging protocols, with low and high flip angles, and with multi-echo MRSI without exceeding SAR levels. In addition, full liver MRSI was achieved within SAR constraints. The integrated 31 P body coil allowed for fast spectroscopic imaging and successful implementation of the multi-echo method in the body at 7 T. Moreover, no additional enclosing hardware was needed for 31 P excitation, paving the way to include larger subjects and more space for receiver arrays. The increase in possible number of RF excitations per scan time, due to the improved B1+ homogeneity and low SAR, allows SNR to be exchanged for spatial resolution in CSI and/or T1 weighting by simply manipulating TR and/or flip angle to detect and quantify ratios from different molecular species.


Assuntos
Imageamento por Ressonância Magnética , Fósforo/química , Imagem Corporal Total , Feminino , Humanos , Fígado/metabolismo , Masculino , Músculos/metabolismo , Imagens de Fantasmas , Fosfocreatina/metabolismo
4.
NMR Biomed ; 32(11): e4173, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31502337

RESUMO

Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double-tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double-tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double-resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state-of-the-art single-tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g-factor maps were used to compare both coils on acceleration possibilities. The newly constructed double-tuned coil was shown to have comparable proton quality and acceleration possibilities to the single-tuned alternative while also being able to acquire high SNR sodium images.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sódio/química , Desenho de Equipamento , Humanos , Razão Sinal-Ruído
5.
NMR Biomed ; 32(1): e4015, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376201

RESUMO

The differentiation grade of cervical cancer is histologically assessed by examining biopsies or surgical specimens. MRS is a highly sensitive technique that images tissue metabolism and can be used to increase the specificity of tissue characterization in a non-invasive manner. We aim to explore the feasibility of using in vivo 1 H-MRS at 7 T in women with cervical cancer to study tissue fatty acid composition. 10 women with histologically proven Stage IB1-IIB cervical cancer were scanned with a whole-body 7 T MR system with a multi-transmit system and an internal receive only monopole antenna. A STEAM sequence was used to obtain 1 H-MRS data. Fatty acid resonances were fitted with Lorentzian curves and the 2.1 ppm/1.3 ppm ratios were calculated. 1 H-MRS data showed fatty acid signals resonating at 2.1 ppm, 1.9 ppm, 1.5 ppm, 1.3 ppm and 0.9 ppm. Mean 2.1/1.3 ppm ratios were 0.019 ± 0.01, 0.021 ± 0.006, 0.12 ± 0.089 and 0.39 ± 0.27 for normal, Grade I, Grade II and Grade III groups respectively. Poorly differentiated tumor tissue (Grade III) showed elevated fatty acid ratios when compared with the well differentiated tumor (Grade I) or normal tissue. 1 H-MRS in cervical cancer at 7 T is feasible and individual fatty acid signals were detected. In addition, poorly differentiated tumors show more fatty acid unsaturation. The 2.1 ppm/1.3 ppm ratio has potential for tumor characterization in a non-invasive manner for uterine cervical cancer.


Assuntos
Espectroscopia de Prótons por Ressonância Magnética , Neoplasias do Colo do Útero/diagnóstico por imagem , Adulto , Idoso , Ácidos Graxos/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias do Colo do Útero/patologia
6.
PLoS One ; 12(9): e0183855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949967

RESUMO

PURPOSE: To establish a preoperative decision model for accurate indication of systemic therapy in early-stage breast cancer using multiparametric MRI at 7-tesla field strength. MATERIALS AND METHODS: Patients eligible for breast-conserving therapy were consecutively included. Patients underwent conventional diagnostic workup and one preoperative multiparametric 7-tesla breast MRI. The postoperative (gold standard) indication for systemic therapy was established from resected tumor and lymph-node tissue, based on 10-year risk-estimates of breast cancer mortality and relapse using Adjuvant! Online. Preoperative indication was estimated using similar guidelines, but from conventional diagnostic workup. Agreement was established between preoperative and postoperative indication, and MRI-characteristics used to improve agreement. MRI-characteristics included phospomonoester/phosphodiester (PME/PDE) ratio on 31-phosphorus spectroscopy (31P-MRS), apparent diffusion coefficients on diffusion-weighted imaging, and tumor size on dynamic contrast-enhanced (DCE)-MRI. A decision model was built to estimate the postoperative indication from preoperatively available data. RESULTS: We included 46 women (age: 43-74yrs) with 48 invasive carcinomas. Postoperatively, 20 patients (43%) had positive, and 26 patients (57%) negative indication for systemic therapy. Using conventional workup, positive preoperative indication agreed excellently with positive postoperative indication (N = 8/8; 100%). Negative preoperative indication was correct in only 26/38 (68%) patients. However, 31P-MRS score (p = 0.030) and tumor size (p = 0.002) were associated with the postoperative indication. The decision model shows that negative indication is correct in 21/22 (96%) patients when exempting tumors larger than 2.0cm on DCE-MRI or with PME>PDE ratios at 31P-MRS. CONCLUSIONS: Preoperatively, positive indication for systemic therapy is highly accurate. Negative indication is highly accurate (96%) for tumors sized ≤2,0cm on DCE-MRI and with PME≤PDE ratios on 31P-MRS.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Período Pré-Operatório
7.
NMR Biomed ; 30(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28574604

RESUMO

The aim of this study was to investigate the signal-to-noise ratio (SNR) gain in early-stage cervical cancer at ultrahigh-field MRI (e.g. 7 T) using a combination of multiple external antennas and a single endorectal antenna. In particular, we used an endorectal monopole antenna to increase the SNR in cervical magnetic resonance imaging (MRI). This should allow high-resolution, T2 -weighted imaging and magnetic resonance spectroscopy (MRS) for metabolic staging, which could facilitate the local tumor status assessment. In a prospective feasibility study, five healthy female volunteers and six patients with histologically proven stage IB1-IIB cervical cancer were scanned at 7 T. We used seven external fractionated dipole antennas for transmit-receive (transceive) and an endorectally placed monopole antenna for reception only. A region of interest, containing both normal cervix and tumor tissue, was selected for the SNR measurement. Separated signal and noise measurements were obtained in the region of the cervix for each element and in the near field of the monopole antenna (radius < 30 mm) to calculate the SNR gain of the endorectal antenna in each patient. We obtained high-resolution, T2 -weighted images with a voxel size of 0.7 × 0.8 × 3.0 mm3 . In four cases with optimal placement of the endorectal antenna (verified on the T2 -weighted images), a mean gain of 2.2 in SNR was obtained at the overall cervix and tumor tissue area. Within a radius of 30 mm from the monopole antenna, a mean SNR gain of 3.7 was achieved in the four optimal cases. Overlap between the two different regions of the SNR calculations was around 24%. We have demonstrated that the use of an endorectal monopole antenna substantially increases the SNR of 7-T MRI at the cervical anatomy. Combined with the intrinsically high SNR of ultrahigh-field MRI, this gain may be employed to obtain metabolic information using MRS and to enhance spatial resolutions to assess tumor invasion.


Assuntos
Imageamento por Ressonância Magnética/métodos , Reto/diagnóstico por imagem , Razão Sinal-Ruído , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Feminino , Humanos , Estadiamento de Neoplasias
8.
Med Phys ; 43(7): 4375, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27370152

RESUMO

PURPOSE: The high precession frequency in ultrahigh field MRI coincides with reduced RF penetration, increased RF power deposition and consequently can lead to reduced scan efficiency. However, the shorter wavelength enables the use of efficient antennas rather than loop coils. In fact, ultrathin monopole antennas have been demonstrated at 7 T, which fit in natural cavities like the rectum in the human body. As the RF field generated by the antenna provides an extremely nonuniform B1 field, the use of conventional RF pulses will lead to severe image distortions and highly nonuniform contrast. However, using the two predominant dimensions (orthogonal to the antenna), 2D RF pulses can be designed that counteract the nonuniform B1 into uniform flip angles. In this study the authors investigate the use of an ultrathin antenna not only for reception, but also for transmission in 7 T MRI of the rectum. METHODS: The 2D radially compensating excitation (2D RACE) pulse was designed in matlab. SAR calculations between the 2D RACE pulse and an adiabatic RF pulse (BIR-4) have been obtained, to visualize the gain in decreasing the SAR when using the 2D RACE pulse instead of an adiabatic RF pulse. The authors used the 7 T whole body MR system in combination with an internally placed monopole antenna used for transceiving and obtained 3D gradient echo images with a conventional sinc pulse and with the 2D RACE pulse. For extra clarity, they also reconstructed an image where the receive field of the antenna was removed. RESULTS: Comparing the results of the SAR simulations of the 2D RACE pulse with a BIR-4 pulse shows that for low flip angles (θ < 41°) the SAR can be decreased with a factor of 4.8 or even more, when using the 2D RACE pulse. Relative to a conventional sinc excitation, the 2D RACE pulse achieves more uniform flip angle distributions than a BIR-4 pulse with a smaller SAR increase (16 × versus 64 ×). CONCLUSIONS: The authors have shown that the 2D RACE pulse provides more homogeneous flip angles for gradient echo sequences when compared to a conventional sinc pulse albeit at increased SAR. However, when compared to adiabatic RF pulses, as shown by simulations, the SAR of the 2D RACE pulse can be an order of magnitude less. Phantom and in vivo human rectum images are obtained to demonstrate that the 2D RACE pulse can provide a uniform excitation while transmitting with a single ultrathin endorectal antenna at 7 T. The combination of thin rectal antennas with efficient uniform transmit can open up new possibilities in high resolution imaging of rectal cancer.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Reto/diagnóstico por imagem , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Modelos Anatômicos , Imagens de Fantasmas , Software
9.
NMR Biomed ; 29(9): 1231-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27191947

RESUMO

Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of (1) H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of (1) H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1 (+) inhomogeneity. Herein we report the first 7 T spinal cord (1) H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér-Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Medula Espinal/metabolismo , Transdutores , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Campos Magnéticos , Masculino , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Medula Espinal/anatomia & histologia
10.
NMR Biomed ; 29(6): 709-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037615

RESUMO

Widespread use of ultrahigh-field (31) P MRSI in clinical studies is hindered by the limited field of view and non-uniform radiofrequency (RF) field obtained from surface transceivers. The non-uniform RF field necessitates the use of high specific absorption rate (SAR)-demanding adiabatic RF pulses, limiting the signal-to-noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body-sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick-up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7-T MRI scanner. The accuracy of power calibration with pick-up probes is analyzed at a clinical 3-T MR system with a close to identical (1) H body coil integrated at the MR system. Finally, we demonstrate high-quality three-dimensional (31) P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Imagem Molecular/instrumentação , Compostos de Fósforo/metabolismo , Isótopos de Fósforo/farmacocinética , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
11.
AJNR Am J Neuroradiol ; 37(5): 802-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26705320

RESUMO

BACKGROUND AND PURPOSE: In recent years, several high-resolution vessel wall MR imaging techniques have emerged for the characterization of intracranial atherosclerotic vessel wall lesions in vivo. However, a thorough validation of MR imaging results of intracranial plaques with histopathology is still lacking. The aim of this study was to characterize atherosclerotic plaque components in a quantitative manner by obtaining the MR signal characteristics (T1, T2, T2*, and proton density) at 7T in ex vivo circle of Willis specimens and using histopathology for validation. MATERIALS AND METHODS: A multiparametric ultra-high-resolution quantitative MR imaging protocol was performed at 7T to identify the MR signal characteristics of different intracranial atherosclerotic plaque components, and using histopathology for validation. In total, 38 advanced plaques were matched between MR imaging and histology, and ROI analysis was performed on the identified tissue components. RESULTS: Mean T1, T2, and T2* relaxation times and proton density values were significantly different between different tissue components. The quantitative T1 map showed the most differences among individual tissue components of intracranial plaques with significant differences in T1 values between lipid accumulation (T1 = 838 ± 167 ms), fibrous tissue (T1 = 583 ± 161 ms), fibrous cap (T1 = 481 ± 98 ms), calcifications (T1 = 314 ± 39 ms), and the intracranial arterial vessel wall (T1 = 436 ± 122 ms). CONCLUSIONS: Different tissue components of advanced intracranial plaques have distinguishable imaging characteristics with ultra-high-resolution quantitative MR imaging at 7T. Based on this study, the most promising method for distinguishing intracranial plaque components is T1-weighted imaging.


Assuntos
Arteriosclerose Intracraniana/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Placa Aterosclerótica/diagnóstico por imagem , Humanos , Placa Aterosclerótica/patologia
12.
Magn Reson Med ; 74(3): 599-606, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26151840

RESUMO

PURPOSE: To develop the simultaneous acquisition of multiple voxels in localized MR spectroscopy (MRS) using sensitivity encoding, allowing reduced total scan time compared to conventional sequential single voxel (SV) acquisition methods. METHODS: Dual volume localization was used to simultaneously excite voxels in both hemispheres. Receiver coil sensitivity profiles were used to unfold the data. To demonstrate the method, MRS voxels in the left and right hippocampus were measured at 3 tesla (T) and the left and right motor cortices at 7T. Spectra were compared to conventional SV acquisitions. Spectra were also recorded from the lesion and contralateral hemisphere of a patient with a low-grade oligodendroglioma at 7T. RESULTS: It was possible to generate signal in two voxels simultaneously and separate the signal originating from the different locations, with spectral results almost identical to those observed using conventional single voxel methods. The method results in an increased chemical shift displacement artifact, which might be improved by advanced pulse designs, and a noise increase due to the unfolding g-factor, which was larger at 3T than 7T. CONCLUSION: The simultaneous acquisition of voxels for MRS is possible by using modulated slice-selective pulses and receive coil sensitivity profiles to unfold the resulting signals.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Humanos , Oligodendroglioma/patologia , Imagens de Fantasmas
13.
NMR Biomed ; 28(4): 514-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25802216

RESUMO

Lactate levels are measurable by MRS and are related to neural activity. Therefore, it is of interest to accurately measure lactate levels in the basal ganglia networks. If sufficiently stable, lactate measurements may be used to investigate alterations in dopaminergic signalling in the striatum, facilitating the detection and diagnosis of metabolic deficits. The aim of this study is to provide a J-difference editing MRS technique for the selective editing of lactate only, thus allowing the detection of lactate without contamination of overlapping macromolecules. As a validation procedure, macromolecule nulling was combined with J-difference editing, and this was compared with J-difference editing with a new highly selective editing pulse. The use of a high-field (7T) MR scanner enables the application of editing pulses with very narrow bandwidth, which are selective for lactate. We show that, despite the sensitivity to B0 offsets, the use of a highly selective editing pulse is more efficient for the detection of lactate than the combination of a broad-band editing pulse with macromolecule nulling. Although the signal-to-noise ratio of uncontaminated lactate detection in healthy subjects is relatively low, this article describes the test-retest performance of lactate detection in the striatum when using highly selective J-difference editing MRS at 7 T. The coefficient of variation, σw and intraclass correlation coefficients for within- and between-subject differences of lactate were determined. Lactate levels in the left and right striatum were determined twice in 10 healthy volunteers. Despite the fact that the test-retest performance of lactate detection is moderate with a coefficient of variation of about 20% for lactate, these values can be used for the design of new studies comparing, for example, patient populations with healthy controls.


Assuntos
Corpo Estriado/química , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Gânglios da Base/química , Colina/análise , Creatina/análise , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
14.
NMR Biomed ; 28(3): 306-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581510

RESUMO

The purpose of this work was to harmonize data acquisition and post-processing of single voxel proton MRS ((1) H-MRS) at 7 T, and to determine metabolite concentrations and the accuracy and reproducibility of metabolite levels in the adult human brain. This study was performed in compliance with local institutional human ethics committees. The same seven subjects were each examined twice using four different 7 T MR systems from two different vendors using an identical semi-localization by adiabatic selective refocusing spectroscopy sequence. Neurochemical profiles were obtained from the posterior cingulate cortex (gray matter, GM) and the corona radiata (white matter, WM). Spectra were analyzed with LCModel, and sources of variation in concentrations ('subject', 'institute' and 'random') were identified with a variance component analysis. Concentrations of 10-11 metabolites, which were corrected for T1 , T2 , magnetization transfer effects and partial volume effects, were obtained with mean Cramér-Rao lower bounds below 20%. Data variances and mean concentrations in GM and WM were comparable for all institutions. The primary source of variance for glutamate, myo-inositol, scyllo-inositol, total creatine and total choline was between subjects. Variance sources for all other metabolites were associated with within-subject and system noise, except for total N-acetylaspartate, glutamine and glutathione, which were related to differences in signal-to-noise ratio and in shimming performance between vendors. After multi-center harmonization of acquisition and post-processing protocols, metabolite concentrations and the sizes and sources of their variations were established for neurochemical profiles in the healthy brain at 7 T, which can be used as guidance in future studies quantifying metabolite and neurotransmitter concentrations with (1) H-MRS at ultra-high magnetic field.


Assuntos
Encéfalo/metabolismo , Metaboloma , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Modelos Teóricos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
15.
AJNR Am J Neuroradiol ; 36(4): 694-701, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477359

RESUMO

BACKGROUND AND PURPOSE: Several studies have attempted to characterize intracranial atherosclerotic plaques by using MR imaging sequences. However, dedicated validation of these sequences with histology has not yet been performed. The current study assessed the ability of ultra-high-resolution 7T MR imaging sequences with different image contrast weightings to image plaque components, by using histology as criterion standard. MATERIALS AND METHODS: Five specimens of the circle of Wills were imaged at 7T with 0.11 × 0.11 mm in-plane-resolution proton attenuation-, T1-, T2-, and T2*-weighted sequences (through-plane resolution, 0.11-1 mm). Tissue samples from 13 fiducial-marked locations (per specimen) on MR imaging underwent histologic processing and atherosclerotic plaque classification. Reconstructed MR images were matched with histologic sections at corresponding locations. RESULTS: Forty-four samples were available for subsequent evaluation of agreement or disagreement between plaque components and image contrast differences. Of samples, 52.3% (n = 23) showed no image contrast heterogeneity; this group comprised solely no lesions or early lesions. Of samples, 25.0% (n = 11, mostly advanced lesions) showed good correlation between the spatial organization of MR imaging heterogeneities and plaque components. Areas of foamy macrophages were generally seen as proton attenuation-, T2-, and T2*- hypointense areas, while areas of increased collagen content showed more ambiguous signal intensities. Five samples showed image-contrast heterogeneity without corresponding plaque components on histology; 5 other samples showed contrast heterogeneity based on intima-media artifacts. CONCLUSIONS: MR imaging at 7T has the image contrast capable of identifying both focal intracranial vessel wall thickening and distinguishing areas of different signal intensities spatially corresponding to plaque components within more advanced atherosclerotic plaques.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Arteriosclerose Intracraniana/patologia , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/patologia , Humanos
16.
NMR Biomed ; 27(11): 1353-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212868

RESUMO

Spectral degradations as a result of temporal field variations are observed in MRSI of the human prostate. Moving organs generate substantial temporal and spatial field fluctuations as a result of susceptibility mismatch with the surrounding tissue (i.e. periodic breathing, cardiac motion or random bowel motion). Nine patients with prostate cancer were scanned with an endorectal coil (ERC) on a 7-T MR scanner. Temporal B0 field variations were observed with fast dynamic B0 mapping in these patients. Simulations of dynamic B0 corrections were performed using zero- to second-order shim terms. In addition, the temporal B0 variations were applied to simulated MR spectra causing, on average, 15% underestimation of the choline/citrate ratio. Linewidth distortions and frequency shifts (up to 30 and 8 Hz, respectively) were observed. To demonstrate the concept of observing local field fluctuations in real time during MRSI data acquisition, a field probe (FP) tuned and matched for the (19) F frequency was incorporated into the housing of the ERC. The data acquired with the FP were compared with the B0 field map data and used to correct the MRSI datasets retrospectively. The dynamic B0 mapping data showed variations of up to 30 Hz (0.1 ppm) over 72 s at 7 T. The simulated zero-order corrections, calculated as the root mean square, reduced the standard deviation (SD) of the dynamic variations by an average of 41%. When using second-order corrections, the reduction in the SD was, on average, 56%. The FP data showed the same variation range as the dynamic B0 data and the variation patterns corresponded. After retrospective correction, the MRSI data showed artifact reduction and improved spectral resolution. B0 variations can degrade the MRSI substantially. The simple incorporation of an FP into an ERC can improve prostate cancer MRSI without prior knowledge of the origin of the dynamic field distortions.


Assuntos
Adenocarcinoma/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Próstata/química , Neoplasias da Próstata/química , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Algoritmos , Artefatos , Colina/análise , Citratos/análise , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Reto , Fatores de Tempo
17.
NMR Biomed ; 27(10): 1248-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146680

RESUMO

Here, we show that the sensitivity of (31)P MRSI of (31)P spins J-coupled to protons can be increased by almost a factor of three when compared with an optimal direct detection free induction decay. By direct detection integrated with multi-echo polarization transfer (DIMEPT), multiple signals from polarization transfer and direct detection can be acquired in one repetition time, with minimal mutual interference, provided that the number of refocusing pulses in the multi-echo polarization transfer part is even. The DIMEPT sequence was implemented on a 7-T body scanner and tested on a phantom and on the breasts of five healthy volunteers. The in vivo signal-to-noise ratio (SNR) enhancement for the J-coupled phosphomonoesters was 270% when compared with an Ernst angle pulse-acquire sequence. However, the phosphodiester signals, presumably mainly mobile phospholipids, had T2 values that were too short to be enhanced. Uncoupled (31)P spins, with sufficiently long T2 values, such as inorganic phosphate, were SNR enhanced by a factor of 1.9 relative to an Ernst-angle excitation pulse-acquire sequence by multi-echo direct detection.


Assuntos
Mama/química , Espectroscopia de Ressonância Magnética/métodos , Adulto , Algoritmos , Etanolaminas/análise , Feminino , Glicerilfosforilcolina/análise , Humanos , Isótopos de Fósforo , Fosforilcolina/análise , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
18.
NMR Biomed ; 27(6): 692-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24764256

RESUMO

Abnormal choline phospholipid metabolism is an emerging hallmark of cancer, which is implicated in carcinogenesis and tumor progression. The malignant metabolic phenotype is characterized by high levels of phosphocholine (PC) and relatively low levels of glycerophosphocholine (GPC) in aggressive breast cancer cells. Phosphorus ((31) P) MRS is able to non-invasively detect these water-soluble metabolites of choline as well as ethanolamine phospholipid metabolism. Here we have investigated the effects of stably silencing glycerophosphoester diesterase domain containing 5 (GDPD5), which is an enzyme with glycerophosphocholine phosphodiesterase activity, in MDA-MB-231 breast cancer cells and orthotopic tumor xenografts. Tumors in which GDPD5 was stably silenced with GDPD5-specific shRNA contained increased levels of GPC and phosphoethanolamine (PE) compared with control tumors.


Assuntos
Neoplasias da Mama/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Fosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/fisiologia , Isótopos de Fósforo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
19.
Breast Cancer Res Treat ; 144(3): 583-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24570008

RESUMO

Phosphorus metabolite ratios are potential biomarkers in breast cancer diagnosis and treatment monitoring. Our purpose was to investigate the metabolite ratios phosphomonoester to phosphodiester, phosphoethanolamine (PE) to glycerophosphoethanolamine (GPE), and phosphocholine (PC) to glycerophosphocholine (GPC) in glandular breast tissue, and the potential effect of the menstrual cycle, using (31)P magnetic resonance spectroscopy (MRS) at 7T. Seven women with regular menstrual cycles each underwent four examinations using a 3D (31)P multi-echo magnetic resonance spectroscopic imaging sequence. Peak integrals were assessed using IDL and JMRUI software. First, T2 relaxation times were calculated using multi-echo data pooled across subjects and time points. Subsequent, metabolite ratios were calculated for each phase of the menstrual cycle using the calculated T2 values to account for when combining the free induction decay and all five echoes. The metabolite ratios were calculated both on group level and individually. T2 decay fits resulted in a T2 relaxation time for PE of 154 ms (95 % CI 144-164), for PC of 173 ms (95 % CI 148-205), for Pi of 188 ms (95 % CI 182-193), for GPE of 48 ms (95 % CI 44-53), and for GPC of 23 ms (95 % CI 21-26). The metabolite ratios analyzed on group level showed negligible variation throughout the menstrual cycle. Individual results did show an apparent intra-individual variation; however, not significant due to the measurements' uncertainty. To conclude, phospholipids in glandular tissue as measured with (31)P MRS at 7 T are not significantly affected by the menstrual cycle.


Assuntos
Mama/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ciclo Menstrual/metabolismo , Adulto , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Metabolômica/métodos , Fósforo/metabolismo , Adulto Jovem
20.
NMR Biomed ; 26(11): 1596-601, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23893556

RESUMO

A method to measure the T2 relaxation time of GABA with spectral editing techniques is proposed. Spectral editing techniques can be used to unambiguously extract signals of low concentration J-coupled spins such as γ-aminobutyric acid (GABA) from overlapping resonances such as creatine and macromolecules. These sequences, however, generally have fixed and relatively long echo times. Therefore, for the absolute quantification of the edited spectrum, the T2 relaxation time must be taken into account. To measure the T2 relaxation time, the signal intensity has to be obtained at multiple echo times. However, on a coupled spin system such as GABA this is challenging, since the signal intensity of the target resonances is modulated not only by T2 decay but also by the J-coupling, which strongly influences the shapes and amplitudes of the edited signals, depending on the echo time. Here, we propose to refocus the J-modulation of the edited signal at different echo times by using chemical shift selective refocusing. In this way the echo time can be arbitrarily extended while preserving the shape of the edited signal. The method was applied in combination with the MEGA-sLASER editing technique to measure the in vivo T2 relaxation time of GABA (87 ± 11 ms, n = 10) and creatine (109 ± 8 ms, n = 10) at 7 T. The T1 relaxation time of these metabolites in a single subject was also determined (GABA, 1334 ± 158 ms; Cr, 1753 ± 12 ms). The T2 decay curve of coupled spin systems can be sampled in an arbitrary fashion without the need for signal shape correction. Furthermore, the method can be applied with any spectral editing technique. The shortest echo time of the method is limited by the echo time of the spectral editing technique.


Assuntos
Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Creatina/metabolismo , Humanos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...